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Abstract— Dynamic model is essential for robust and reliable
robotic fish motion control. Despite considerable efforts in
robotic fish dynamic modeling, background flow has not been
well considered yet, leading to the deterioration of applying
robotic fish to practice. In this paper, we propose a novel dynamic
model, termed Flow-Aware Robotic fish Model (FARM), that
with well consideration to background flow using Koopman
operators without increasing computation complexity. Specifi-
cally, we first collect motion data of the robotic fish in different
background flow fields, and then obtain a linear approximation
(the dynamic model) of nonlinear dynamics through carefully
selected lifted functions. The obtained model can predict the
next state based on the current state, control input, and average
flow velocity of the local flow field. We evaluate the effectiveness
of obtained model by comparing the Root Mean Square Error
(RMSE) of predicted motion trajectories with real trajectories
in various flow field environments. The results indicate that
FARM is highly promising for obtaining a reliable dynamic
model and can achieve comparable prediction accuracy even in
unseen flow field environments with rough flow maps.

I. INTRODUCTION

Robotic fish has gained substantial attention in robotics
field [1]-[3] in past decades due to their unique benefits, such
as concealment, flexibility, and energy efficiency. Notable ad-
vancements have been achieved in various aspects, including
the realm of electromechanical design [4], [5], underwater
perception [6], [7] and control [8], [9]. However, the problem
of dynamic modeling for the robotic fish, as playing a
crucial role in motion planning and control, remains unsolved
and challenging due to its inherently more complex high-
dimensional and nonlinear properties compared to traditional
Automatic Underwater Vehicle (AUV), especially in real-
world environments with background flow.

When it comes to dynamic modeling like for robotic
fish, the fundamental approaches are to derive them from
first principles [10], [11]. However, such solutions usually
undergo significant simplification, hence demanding complex
expert knowledge and may lead to an inaccurate model.
Furthermore, to obtain usable models, a large amount of
real-world data to identify the unknown parameter [10] is
still mandatory. Inspired by this fact, several works [3], [12]
have circumvented any a prior knowledge of first principles
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and, instead, directly employ real-world data to train a Neural
Network (NN) to describe the dynamic relationships of the
desired states relevant to robotic fish. This eliminates the
complexities and inaccuracies brought by approximation
operation, enabling the direct acquisition of an NN-based
dynamic model. However, the dynamic model based on
the black box is not friendly for many control techniques.
Alternatively, Mamakoukas et al. [13] and Castano et al. [14]
used the Koopman operator [15], [16] to obtain the dynamic
model of robotic fish, as it can transform a complex nonlinear
system into a tractable linear system and the obtained model
is explainable and control-friendly.

While the aforementioned studies have made substantial
contributions to the dynamic modeling of robotic fish, they
share a common limitation: the influence of background flow
is not well considered during dynamic modeling, which leads
that the established dynamic models are likely to fail to
describe accurately when applied complicated environments
with background flow, such as in ocean and river. Given the
complex nature of interactive dynamic of the robotic fish
in the background flow, researchers are often compelled to
resort to end-to-end learning of intricate flow fields [17],
[18]. These solutions circumvent the modeling problem of
robotic fish in complicated environments, but the reliability
and generality of the obtained control policy are limited. In
addition, a notable fact that is numerous bio-mimetic sensors
and method [19], such as the Artificial Lateral Line System
(ALLS) system, have begun to emerge for sensing the flow
field surrounding robotic fish, which undoubtedly expedites
the urgency of considering the impact of background flow
information on the dynamics of robotic fish as a reasonable
model.

In this work, a novel dynamic modeling framework, named
Flow-Aware Robotic fish Modeling (FARM), is proposed.
Specifically, we firstly collect motion data of the robotic fish
in a real platform with different background flows, where
the velocity field of these background flows are known.
Then, we divide the organized data into two groups, with
a time step difference before and after, and use carefully
selected lifted functions to expand the dimensions of the
state. Finally, we obtain the linear approximation operator
as dynamic model of the robotic fish using the least squares
method. The effectiveness of obtained model is validated
through extensive prediction experiments and comparison
to the method without consideration to background flow
information. The experimental results indicate that, even in
unseen background flow scenarios, obtained model also has
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Fig. 1. Overview of Pipeline. (a) Schematic diagram of robotic fish undergoing planar locomotion with background flow. (b) Training the Koopman

operator using customized lifted function with collected real world motion data. (c) Prediction of next state using trained Koopman model given current

state, action and velocity of local background flow.

good prediction accuracy. In summary, FARM is a universal
modeling framework with high accuracy, good robustness,
and minimal data requirements for robotic fish without
requirement of high accuracy in background flow information.

II. FLOW-AWARE ROBOTIC FISH MODEL (FARM)

Robotic fish have complex geometric shapes and generate
forward thrust through swinging motion. Compared to tra-
ditional propeller propelled AUVs, robotic fish have more
sophisticated high-dimensional nonlinear dynamics, making it
more challenging to establish dynamic model for robotic fish.
The majority of existing works [10], [11], [13], [14] involve
making several basic assumptions about hydrodynamics to
obtain the model with undetermined parameters, and then
identified these parameters by collecting motion data of the
robotic fish in a static tank. Usually, the dynamic model F'(-)
is given in the form of

Tpr1 = F(ow, uk) (D

where z stands for the state of robotic fish (e.g., position,
attitude and velocity), while u is usually the control signal
of joints of robotic fish.

However, the Eq. (I)) possesses a critical limitation in
that it is only applicable in scenarios where the robotic fish
swim in an environment without any background flow. It is
very intuitive that once the environment has a background
flow, robotic fish will be subjected to flow-induced moment
[19], the model will no longer be applicable, which also
be proved in Section To this end, we propose the
Flow-Aware Robotic fish Model (FARM), which aims to
incorporate the influence of background flow on the dynamic
model of robotic fish. Although the flow field environment is
exceptionally complex, considering that the Reynolds number
of the environment where the robotic fish is located is less
than 10° [20], we have simplified the model based on the
following two important observations:

1) The motion state of robotic fish is only related to the
local flow field around it.

2) The velocity of mean flow of the local flow field plays
a dominant role in the dynamics of the robotic fish.

Therefore, the FARM model is as
Tpy1 = F(ag, ur, pr)- 2

where py, is represent the mean velocity of local flow field
around the robotic fish.

In order to streamline the complexities inherent in this
study and to better elucidate our central concepts, only planar
locomotion of robotic fish is considered in this paper. As
shown in Fig. [Th, the position of the robotic fish p = [ps, py]
is represented by the Center of Mass (CoM) of the robotic
fish. The head orientation and linear velocity of robotic fish
expressed in inertial coordinates are denoted by € and v =
[vz,vy], respectively. We use w and « to denote the angular
velocity and the tail deflection angle of robotic fish. Like
most existing works [11], [14], the tail deflection angles «
of robotic fish is controlled by the periodic function as

at) = ap + agsin(ay * t) 3)

where «,, o, ay are denoted as amplitude, bias, and
frequency of the sinusoidal signal, respectively. By changing
these quantities over time, the movement mode of the robotic
fish will also change accordingly. Based on above statement,
the specific content of each variable in Eq. (2) follows as

T = [pxapyaeavxvvva]T
up = [0, ap, ap) T 4
ok = [Pz py] "

It is worth mentioning that the core idea of this work is to
consider the flow field information in the form of the average
velocity of the local flow field into the dynamic model of
the robotic fish, in order to improve the motion ability of



the robotic fish in non stationary flow field environments.
The way to obtain velocity field information within the
range of motion is not the focus of this work, and there
have been corresponding works focused on this field, such
as motion tomography [19]. Another key point is that we
hope that the dynamic model obtained through data-driven
methods can be used for controller design. Therefore, we use
the Koopman operator [16] to obtain linear approximations
of complex nonlinear dynamics Eq. in this work. The
resulting linear system not only has good fitting performance,
but also facilitates controller design.

III. MODELING USING KOOPMAN OPERATOR

As a method for evolving complex nonlinear systems in a
linear manner, Koopman operator enables controllers designed
based on it to have better control performance than those that
rely on approximating nonlinear systems near equilibrium
points, which has attracted a lot of attention in the field of
robotics, especially for soft robotics [21].

A. Finite-dimensional Koopman Operator Approximation

The Koopman operator is a linear infinite dimensional
operator which can transform the evolution of nonlinear finite
dimensional system in a linear but infinite dimensional way.
In practice, data-driven methods, such as Extended Dynamic
Mode Decomposition (EDMD) [15], are usually used to
obtain manageable finite dimensional approximation.

Given a discrete-time nonlinear dynamical system with
control input evolving as Eq. , where 7, € R, uy €
R? and pp € R? in this paper. The Koopman operator is
an infinite-dimensional operator that can express a finite-
dimensional nonlinear system as a linear one, which is defined
as

V(Zht1, Ukt1, Prv1) = V(F (Tk, Uk, Pr), Ukt1, Prt1)
5)
= ]C\Ij(zkvulﬂpk)

where U(-) is the lifted function (i.e., observation function).
Therefore, the Koopman operator U propagates the lifted
state forward as the original dynamics F'(-) do, but linearly.

In order to obtain the tractable finite-dimensional operator,
the lifted function W(-) is defined as vector-valued function

as
§=¥(z,u,p) ©

= [‘rTa uTa PT7 ¢1(957 u, p)a e 7wn(xv u, p)]
where ¥(-) € RY and ¢ € RY is lifted observables. It
should be noted that we can now obtain the original state x

by selecting the first n term of the lifted state. Furthermore,
we denote this restore operation as W1 ( )E], ie.,

1 I6><6
v (fk)_fk{o}_wk 7

Once we have collected the interaction trajectories, whether
the simulator or the real world, between the agent and the

I'The restore operation ¥ ~1(-) is not the mathematical inverse of ¥(-)
indeed, we use this symbol for clarity.

system as
X = [xh... )xp]
U=lu, - ,up] (8)
Q= [p17"' apP]
where X € R”, U € R” and 2 € R” are the sequence of the
state, control input, velocity of local flow field, respectively.
In general, the time gap At between xj, and x41 should be
equally.
The approximate Koopman operator can be obtained by
using the least squares method to fit the collected data as
R p-1, R
Ka = argmin Y =||ék11 — Kas|[? ©)
[
where Kg € RV*N s the approximate Koopman operator.
Since the parameter matrix i.e., approximate Koopman
operator I@d is linear, there is a closed-form solution for this
linear least squares problem as

Kq= ABT (10)

where § denotes the Moore-Penrose pseudo-inverse, and
P—1 P—1

1 1
A=§;§k+1fg B:f;&fg

Once the FARM model obtained, we can use it for state
prediction. Given the initial state x, there are two ways to
obtain the future state xj, after k steps:

Tk = \Ilil(' o Iédlll(\ljil(led \Ij(anu07p0))7ul7pl) o )
N—— ——

k times

(1D

(12)
as shown in Fig. [Tk.

For the purposes of this paper, we focus on the dynamic
system with control input and the approximate Koopman
operator for practical implementation. Therefore, we recom-
mend readers who are interested in mathematical details or
other types of Koopman operators to refer to [15], [16].

B. Synthesis of Koopman Basis Function

As we mention above, the representational ability of
approximate Koopman operator K4 stems from the fact
that the basis function ¥(-) provides nonlinear combinations
of the original state x, which resulting in an approximate
linear representation in the latent space after lifting the
dimension of states x. Therefore, selecting an appropriate
basis function W(-) is the crucial key to achieve a satisfactory
linear representation.

Therefore, we use the combination of polynomial and
Fourier basis function to form the basis function. Specifically,
the basis function in this paper is as

¢1~65(xa U, p) = E(SET{J?, U, P})
w66~77(‘r’ u, p) = Sin(SET{x7 u, P})
Yrgs9 (T, u, p) = cos(SET{x,u, p})

where SET{-} means a set of all elements of vector z, u and
p and = represent a combination multiplication that selects
two elements from a set to multiply. In this way, there are
89 additional basis functions, such that ¥(-) € R1%,

13)
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The Experimental Platform. (a) The robotic fish, developed by the MAgIC Lab at ShanghaiTech University, consist of rigid head, flexible body
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IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed approach,
we conducted several experiments on the developed physical
platform. Specifically, we firstly deploy the robotic fish to
collect motion data under several different background flow
velocities. Then, we obtain the FARM model I@d using the
collected motion data set. Finally, the prediction accuracy
of the obtained model was evaluated using unseen random
motion trajectories under unseen background flow velocities.

A. Experimental Platform

As shown in Fig. [2h, the developed untethered robotic fish
with length and weight are 0.51 m and 1.046 kg, which consist
of an ESP32S3 Micro Control Unit (MCU), a 800 mAh
7.4V aircraft lithium battery, and one activated 5V servo
motor controlled according to Eq. (). To generate different
background flow fields, we built an background flow pool
consists of a pool and a waterproof pump array as show in
Fig. b and Fig. k. The swimming pool is in size of 4m x
4m x 0.5m. During the experiments, the water depth was
0.3m. The RGB camera is mounted upon the pool to collect
motion data of the robotic fish. The computer takes charge of
detecting the position and direction of the robotic fish from
the captured images, while the control instructions calculated
by the host computer are sent to the robotic fish wirelessly.

B. Motion Data Collection

In this work, we collect random motion data of robotic fish
under four different background flow fields. The background
flow of these environments are generated by driving both sec-
ond and third motors with different Pulse Width Modulation
(PWM) signal. We use the flow velocity values measured

5cm in front of the motors to refer to corresponding fields,
ie., Om/s, 0.27m/s, 0.38m/s, and 0.46m/s. In order to
collect continuous trajectory data with sufficient length instead
of being directly blown to the edge of the pool due to the
background flow, we designed a proportional controller for
robotic fish to track the target point P that will randomly
change position every 10s. The control law is as

Qg = kad ap = kbﬂ (14)

where k, = 0.5 and k; = 0.2 are control gain, and the d and
[ are distance and heading angle between the robotic fish and
target point P, respectively. The oy was fixed at 27 rad/s.
Due to the physical limitations of robotic fish, a; was limited
to [—65°,65°] and o, was limited to [0°, 15°]. During the
data collection, the camera system record the position and
orientation of robotic fish at 5 Hz, and the updating frequency
of the control law is 1Hz, which is enough for the single
joint tail swinging robotic fish.

In addition, we also need the average velocity of the local
flow field. As we mentioned earlier in Section [} there are
currently many methods [19] that can obtain local average
velocity, which is not the core of this work. Therefore, for
convenience, we use COMSOL to simulate the global velocity
field of the real environments, as shown in Fig. [3] After
obtaining global velocity field, the average velocity of local
flow field can be calculated, which is the average value
of velocity of all sampling points whose distance from the
robotic fish is less than R = 0.5 m, which is empirically taken
based on the size of the robotic fish. Note that there is a
difference between the velocity field calculated by simulation
software and the actual velocity field indeed, but subsequent
experimental results had shown that even rough velocity field
information can improve the accuracy of dynamic prediction
to a certain extent.

C. Training and Evaluation

We use a total of 2000 random motion data collected
at Om/s, 0.27m/s and 0.38m/s as the training data sets.
According to the proposed training process as shown in Fig. [T}
the heat map of the trained FARM model is shown in the
Fig. |5} We can see that the FARM model is sparse, and
many values in the matrix are close to zero, which means
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the lifted functions still has room for simplification, which
can lead to a lower dimensional FARM model. In addition,
we also trained a baseline that only used data collected in
0m/s environment, which is used to represent the dynamic
model which does not consider background flow.

We collected extra new 60s data at Om/s, 0.27m/s,
0.38m/s and 0.46m/s, and use baseline and FARM to
generate predicted trajectories, as shown in Fig. @ Note
that the test motion data was not used in training phase and
the data from 0.46 m/s even never seen before. The results
shown that both the baseline and FARM had good prediction
results in environment without background flow. In 0.27 m/s
and 0.38 m/s environments, the predicted trajectory of FARM
was closer to the ground truth trajectories compared to the
baseline. Moreover, the prediction result of baseline in unseen
0.46 m /s environment is quickly diverged, while FARM still
kept acceptable prediction. The above results clearly indicate
that the FARM model has effectively integrated background
flow velocity into the dynamic system of robotic fish. It
is worth noting that the prediction results of FARM in a
stationary flow field environment are slightly worse than the
baseline. We believe that the main reason is that the global
flow field information used for training is roughly estimated
through COMSOL rather than actual measurements.

To clearly demonstrate the predictive accuracy of each
element in the state, we additionally collected 9 trajectories
at Om/s, 0.27m/s, 0.38m/s and 0.46 m/s, with each one
lasting for 20s. The absolute error between each predicted
state and the actual state was recorded as shown in Fig. [6] and
the Table [I| shows the statistical comparison of the prediction
results in terms of Root Mean Square Error (RMSE).

TABLE I
THE COMPARISON RESULTS IN RMSE

Env | Method | = | vy | 6 | vz | vy | w
0 baseline | 0.13 | 0.12 | 0.19 | 0.037 | 0.037 | 0.39
FARM 0.25 | 0.19 | 0.23 | 0.042 | 0.038 | 0.40
027 baseline | 0.73 | 034 | 0.74 | 0.093 | 0.062 | 0.42
: FARM 0.21 | 0.19 | 0.44 | 0.057 | 0.047 | 0.41
038 baseline | 0.75 | 0.28 0.8 0.105 | 0.062 | 0.41
’ FARM 0.28 | 0.19 | 0.37 | 0.051 | 0.048 | 0.40
0.46 baseline | 0.89 | 047 | 092 | 0.117 | 0.073 | 041
: FARM 0.56 | 0.34 | 0.52 | 0.083 | 0.053 | 0.40

As can be seen that the baseline performed well in
environment without background flow, but its performance
sharply decreased against flow conditions. The FARM had
the same performance as baseline in environment without
background flow and better prediction performance in envi-
ronments with background flows. FARM exhibited almost
identical performance in various background flows, with only
slight decrease in performance in 0.46 m/s flow condition.
In addition, we can clearly see that the prediction error of
the baseline on v, is larger than v,, because the generated
background flow is superimposed in the x-direction.

V. CONCLUSIONS

In this paper, we incorporated background flow informa-
tion into the dynamic model of robotic fish utilizing the
approximate Koopman operator approach. The obtained model
is linear finite dimension and establishes the relationship
between the average flow velocity of the local background
flow field and the dynamics of the robotic fish, which greatly
improved the accuracy of the dynamic model of robotic fish in
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y-axis represent corresponding error values. Each case is conducted with 9 trajectory consisted of 20s, while the solid lines representing the mean of
multiple trajectories and shaded areas representing the standard deviation.

the environment with background flow without compromising
the convenience of controller design. The experiments were
conducted by developed robotic fish in different background
flow environments and the results showed that the short- and
long-term prediction performance of proposed model was
satisfactory, even in unseen environment.

For future works, we will further validate the proposed
dynamic modeling framework in more sophisticated environ-
ment by combination with advanced model-based controllers
to achieve the challenging robotic fish control task in complex
background flow.
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